1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
sebastianlocky edited this page 2025-05-28 05:01:41 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support discovering to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating function is its reinforcement knowing (RL) action, which was used to fine-tune the design's reactions beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and goals, ultimately boosting both significance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, meaning it's geared up to break down complex queries and factor through them in a detailed way. This directed thinking procedure permits the model to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured responses while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually recorded the market's attention as a flexible text-generation design that can be integrated into various workflows such as representatives, sensible reasoning and data interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion criteria, making it possible for efficient inference by routing queries to the most pertinent professional "clusters." This method enables the design to focus on different problem domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 model to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more efficient designs to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and evaluate designs against essential security requirements. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limitation increase, develop a limitation boost request and connect to your account group.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For directions, see Establish permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent damaging material, and examine models against essential security criteria. You can implement security steps for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After receiving the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the last . However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 design.

The design detail page offers necessary details about the design's abilities, rates structure, and application guidelines. You can find detailed use instructions, including sample API calls and code bits for integration. The design supports various text generation jobs, including material creation, code generation, and question answering, using its support learning optimization and CoT thinking capabilities. The page also consists of deployment alternatives and licensing details to help you get going with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a variety of circumstances (in between 1-100). 6. For example type, select your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up advanced security and infrastructure settings, including virtual private cloud (VPC) networking, service function approvals, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you might want to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play area to access an interactive user interface where you can try out various prompts and adjust design criteria like temperature and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal outcomes. For instance, material for reasoning.

This is an exceptional method to check out the design's reasoning and text generation abilities before incorporating it into your applications. The play area provides instant feedback, assisting you comprehend how the model reacts to numerous inputs and letting you tweak your prompts for optimal outcomes.

You can quickly check the model in the playground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends out a demand to generate text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 hassle-free approaches: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to help you pick the approach that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be triggered to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design internet browser displays available designs, with details like the service provider name and design capabilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 model card. Each model card reveals key details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to view the model details page.

    The design details page includes the following details:

    - The model name and provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you deploy the model, it's suggested to examine the design details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, use the immediately created name or develop a custom one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, enter the number of instances (default: 1). Selecting appropriate instance types and counts is vital for expense and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the model.

    The release process can take a number of minutes to finish.

    When implementation is complete, your endpoint status will change to InService. At this moment, the design is all set to accept reasoning demands through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can conjure up the model using a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace deployments.
  5. In the Managed releases area, wiki.dulovic.tech find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct ingenious services using AWS services and sped up calculate. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the inference efficiency of big language models. In his downtime, Vivek delights in treking, seeing movies, and trying various cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing options that help consumers accelerate their AI journey and unlock organization value.